
PARALLEL COMPUTING IN STATISTICAL METHODS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ORÇUN OLTULU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

STATISTICS

AUGUST 2022

Approval of the thesis:

PARALLEL COMPUTING IN STATISTICAL METHODS

submitted by ORÇUN OLTULU in partial fulfillment of the requirements for
the degree of Master of Science in Statistics Department, Middle East
Technical University by,

Prof. Dr. Halil KALIPÇILAR
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Özlem İlk Dağ
Head of Department, Statistics

Assist. Prof. Dr. Fulya Gökalp Yavuz
Supervisor, Statistics, METU

Examining Committee Members:

Prof. Dr. Olçay Arslan
Statistics, Ankara University

Assist. Prof. Dr. Fulya Gökalp Yavuz
Statistics, METU

Prof. Dr. Ceylan Talu Yozgatlıgil
Statistics, METU

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Surname: Orçun Oltulu

Signature :

iv

ABSTRACT

PARALLEL COMPUTING IN STATISTICAL METHODS

Oltulu, Orçun
M.S., Department of Statistics

Supervisor: Assist. Prof. Dr. Fulya Gökalp Yavuz

August 2022, 56 pages

Cost-efficient data collection and storage methods enable scientists, companies,
and even regular computer users to reach high-dimensional data sets faster and
cheaper. Even though personal computers are getting more powerful and effi-
cient, some algorithms, tasks, and problems still require too much computational
power and time to run on a personal computer. For a few decades, parallelization
in statistical computing had an increasing trend, and researchers put significant
effort into converting or adjusting known statistical methods and algorithms in
parallel. The main reasons for the transition to parallel methods are the rapid
growth in the size and the volume of data and the accelerated hardware devel-
opments. In this study, we applied the parallelization technique to statistical
algorithms such as Linear Regression models, Non-parametric Regression mod-
els, and the measurement error kernel regression operator (MEKRO) algorithm
for variable selection in Non-parametric Regression models. Simulation stud-
ies are conducted for each algorithm and recorded their accuracy measures and
elapsed times to compare and see whether parallelization methods offer signifi-
cant efficiency while maintaining the accuracy level as high as their sequential
versions. The overall simulation results show that parallelization of the offers

v

a great potential of time efficiency with negligible or no changes in accuracy
values.

Keywords: Parallel Computing, Multi-Core Systems, Linear Regression, Non-
Parametric Regression, Variable Selection

vi

ÖZ

İSTATİSTİKSEL YÖNTEMLERDE PARALEL HESAPLAMALAR

Oltulu, Orçun
Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Fulya Gökalp Yavuz

Ağustos 2022 , 56 sayfa

Düşük maliyetli veri toplama ve depolama yöntemleri, bilim insanlarının, şir-
ketlerin ve hatta günlük bilgisayar kullanıcılarının yüksek boyutlu veri setlerine
daha hızlı ve daha ucuza ulaşmasını sağlamaktadır. Kişisel bilgisayarlar daha
güçlü ve verimli hale gelmelerine rağmen bazı algoritmalar, görevler ve prob-
lemler kişisel bir bilgisayarda çalışmak için hala çok fazla hesaplama gücü ve
zaman gerektirmektedir. Son yıllarda, istatistiksel hesaplamada paralel hesap-
lama yöntemlerinin cazibesi artmıştır ve araştırmacılar, bilinen istatistiksel yön-
temleri ve algoritmaları paralel olarak çalıştırmak veya ayarlamak için önemli
çaba sarf etmektedir. Paralel yöntemlere geçişin temel nedenleri, veri boyutun-
daki ve hacmindeki hızlı büyüme ve hızlanan donanım gelişmeleridir. Bu çalış-
mada, Doğrusal Regresyon modelleri, Parametrik Olmayan Regresyon modelleri
ve Parametrik Olmayan Regresyon modellerinde değişken seçimi için kullanı-
lan Ölçüm Hatası Çekirdek Regresyon Operatörü (MEKRO) algoritması gibi
istatistiksel algoritmalar için parallel hesaplama tekniği uygulanmıştır. Her bir
algoritma için simülasyon çalışmaları tasarlanmış, uygulanmış ve doğruluk ölçü-
leri ve geçen süreler kaydedilmiştir. Kullanılan paralelleştirme yöntemlerinin bu

vii

algoritmalar için ardışık versiyonlar kadar yüksek doğruluk seviyesini korurken
önemli verimlilik sağlayıp sağlamadığı tartışılmıştır. Genel simülasyon sonuçları,
paralelleştirmenin, doğruluk değerlerinde ihmal edilebilir veya hiç değişiklik ol-
madan büyük bir zaman verimliliği potansiyeli sunduğunu göstermektedir.

Anahtar Kelimeler: Paralel Hesaplama, Çok Çekirdekli Sistemler, Doğrusal Reg-
resyon, Parametrik Olmayan Regresyon, Değişken Seçimi

viii

To my family and my love Ekin.
In memory of M.Hulki UZ.

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis advisor Assist. Prof. Dr. Fulya
Gökalp Yavuz for her limitless patience, quality support and motivation in this
period. Without her effort these pages would not have become a thesis. There
is not enough word to express my gratitude for her. I also would like thank my
examining committee members, Prof. Dr. Olçay Arslan and Prof. Dr. Ceylan
Talu Yozgatlıgil for their interest on my study and precious time to review my
thesis.

I am thankful that I was a student and then worked as a research assistant at
METU. I must present my gratitude to all the members of the Department of
Statistics, METU; especially to my roommate Serenay Çakar and other fellow
RA friends.

I wish to express my gratitude to my parents who have put limitless effort and
never stopped supporting me. Also, I would like to thank my sweet sister Defne
for making my life joyful and happier. I believe that without my family, I would
not be the person I am today.

My love Ekin, I have no words to acknowledge your support, encouragement,
and energy to overcome every obstacle and achieve all my goals. I feel super
lucky to have you in my life.

I owe special thanks to my closest friend İbrahim Hakkı Erduran for being always
there for me every time I needed. Also, special thanks to Muhammed Ali Aşgit,
Berkay Türkan and Berker Fidancı for their wonderful friendship.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 7

2.1 Parallel Linear Regression Models 7

2.2 Parallel Kernel Density Estimation 8

2.3 Parallel Non-Parametric Regression Models 9

2.4 Variable Selection in Non-Parametric Regression Models 9

3 METHODOLOGY . 11

3.1 Parallel Linear Regression Models 11

3.2 Parallel Kernel Density Estimation 13

3.3 Parallel Non-Parametric Regression Models 15

xi

3.4 Parallel Variable Selection Method in Non-Parametric Regression
Models . 20

3.4.1 MEKRO method for Variable Selection in Kernel Regression 20

3.4.2 MEKRO Algorithm . 22

3.4.3 MEKRO with Categorical Variables 24

3.4.4 Parallelization of Variable Selection Method in Kernel Re-
gression . 25

4 SIMULATION STUDIES . 29

4.1 Simulation Design . 29

4.1.1 Simulation Design for Parallel Linear Regression Models . 29

4.1.2 Simulation Design for Parallel Kernel Density Estimation 30

4.1.3 Simulation Design for Parallel Non-Parametric Regression 30

4.1.3.1 Univariate Case . 31

4.1.3.2 Bivariate Case . 32

4.1.3.3 Multivariate Case 33

4.1.4 Simulation Design for Parallel MEKRO Algorithm 33

4.2 Results and Findings . 35

4.2.1 Simulation Results for Parallel Linear Regression 35

4.2.2 Simulation Results for Parallel Kernel Density Estimation 38

4.2.3 Simulation Results for Parallel Non-Parametric Regression 39

4.2.4 Simulation Results for Parallel MEKRO Algorithm 45

5 CONCLUSION . 51

xii

LIST OF TABLES

TABLES

Table 4.1 Elapsed Time (in seconds), Linear Regression 36

Table 4.2 Mean Squared Errors, Linear Regression 37

Table 4.3 Elapsed Time (in seconds), Kernel Density Estimation 38

Table 4.4 Elapsed Time (in seconds), Non-Parametric Regression 40

Table 4.5 Root Mean Squared Errors, Non-Parametric Regression 44

Table 4.6 Elapsed Time (in seconds), MEKRO Algorithm 48

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 Serial Computing Scheme 1

Figure 1.2 Parallel Computing Scheme 2

Figure 3.1 Illustration of Parallel Non-Parametric Regression. 18

Figure 4.1 Shape of the univariate function. 32

Figure 4.2 Shape of the simulation function 34

Figure 4.3 Change in Elapsed Time Relative to Sequential Process . . 42

Figure 4.4 Change in λ over τ . 46

Figure 4.5 Parallel Elapsed Time Relative to Sequential Elapsed Time 47

Figure 4.6 Change in AIC, over tuning parameter τ 47

xiv

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

AIC Akaike Information Criterion

CDF Cumulatives Distribution Function

CPU Central Processing Unit

DnR Division and Recombination

EM Expectation-Maximization

EDF Empirical Distribution Function

EP Embarrassingly Parallel

GPU Graphics Processing Unit

KDE Kernel Density Estimation

LMS Linear Multi-splitting

MCMC Markov-Chain Monte Carlo

MEKRO Measurement Error Kernel Regression Operator

MEM Measurement Error Models

MLR Multiple Linear Regression

MSE Mean Squared Error

OLS Ordinary Least Squares

OS Operating System

RMSE Root Mean Squared Error

SLLN Strong Law of Large Numbers

SSE Sum of Squared Errors

SWW Stefanski, Wu, and White Method

xv

xvi

CHAPTER 1

INTRODUCTION

The traditional way to write programs or software is called serial computing. In
serial computing, the problem is broken into discrete series of instructions to be
run on single CPU. Then, the instructions are executed one by one and only one
instruction can be executed at any time point. Figure 1.1 shows an example of
a schematic representation of serial (or sequential) computing.

Figure 1.1: Serial Computing Scheme

On the other hand, parallel computing is a form of computation in which many
calculations are carried out simultaneously. In its simplest form, it is the simul-
taneous use of multiple compute resources to solve a computational problem.
An illustrative example for parallel computing scheme is provided in Figure 1.2.

Parallel computing can be briefly defined as solving a simple or a complex task
using many processing elements. The idea is that the task is divided into many
sub-tasks and they are solved at the same time. Therefore, parallel computing
is a time and cost efficient process. After the invention of multi-core processors
on daily-use computers, personal computers has become significantly more pow-

1

Figure 1.2: Parallel Computing Scheme

erful. However, serial computing, the basic way of coding, often avoids using
the potential computation power of a machine. For example, while running a
serial algorithm, only the first core of a personal computer’s CPU is working,
the rest of them are in ’sleep’ mode.

There are two main parallelization methods for statistical computation. The first
one is domain decomposition. The main idea behind domain decomposition, also
known as data decomposition or data parallelism, is that the computational do-
main is distributed across computing processors. For each processor, different
subsets of the domain, or data, are assigned and in each of them the same al-
gorithm is applied. Using multiprocessors provides higher efficiency compared
to single domain approaches. Moreover, domain decomposition can be easily
applied in shared memory machines (1). The second method is functional de-
composition. The main difference between functional decomposition, also known
as task decomposition or task parallelism, and domain decomposition is that for
functional decomposition, each processor has different functions. For this strat-
egy, each processor is responsible for different portions of a cooperative task.
This strategy can be run on different computers asynchronously (1).

Some problems, set of problem, or complete jobs can be easily parallelized,
and this is even considered ‘embarrassing’ for a regular programmer; therefore,
such algorithms are called Embarrassingly Parallel (EP) Algorithms. For an
EP algorithm there is always a potential speed-up according to the number

2

of threads used since subtasks run completely independent from each other.
Monte-Carlo simulations, Boostrap and cross-validation methods can be ex-
amples of EP Algorithms (1). Unfortunately, not all algorithms or problems
can be considered as EP, there exist non-EP algorithms, especially in statistics,
like expectation-maximization (EM) algorithm, and Markov-Chain Monte Carlo
(MCMC) method. However, Matloff (2) suggests that some of the non-EP algo-
rithms can be converted into EP, while maintaining their statistical properties.

Parallel statistical computing is one of the most popular techniques which was
driven by the ability to store high dimension data sets and decrease in the cost of
using the high performance computers. Parallelization of a statistical algorithm
can even be done on modern personal computers.

In this study, we provide a simulation study to observe the potential of paral-
lelization of least squares problem for multiple linear regression models using
linear multi-splitting method described in (1; 3; 4; 5). In short, the parallel
algorithm divides the global least squares problem into local LS problems and
then recombines the local solutions with proper weighting and then estimate β̂

with an iterative algorithm.

Divide and recombine (DnR) is one of the parallelization methods that allows
the existing data or method to be implemented by dividing it into smaller pieces.
It is possible to use the DnR method in most of the regression methods used
to reveal the relationship between the data. Although several libraries created
in existing programming languages for many of the regression methods, such an
approach is not yet used for the non-parametric regression. However, it should
be kept in mind that the non-parametric regression calculation method takes
relatively long time. For this reason, parallelization would be a handy strategy
to decrease the calculation time in non-parametric regression. In this study,
we aim to demonstrate how time efficiency is achieved using DnR methods for
non-parametric regression with the help of several parallelization strategies in
R. The results indicate that the computation time is possible to be reduced
proportionally with a trade off between time and accuracy.

We conduct a simulation study to compare parallel and sequential methods for

3

KDE and non-parametric regression models. The main purpose of this simula-
tion study is to see if parallelization of those kernel methods allow time efficiency
and provide accurate results as good as sequential (regular) versions and to pro-
vide open source code for prospective researchers. The comparison is based on
run times (in seconds) and root mean squares of the models. For this aim, we
use DnR method by running the process independently on each core. The pro-
cess is started by dividing the data in random into several chunks and they are
sent to each unique core to make the required calculations. Then, the results are
collected from each core to present the final predictions. For the simulations,
R programming language is used to fit non-parametric regression models with
’npreg’ function from ’np’ package (6).

Non-parametric approaches for variable selection in modeling maintains its pop-
ularity with increasing momentum for statistical and machine learning methods.
The increasing size of the data and the number of variables make it necessary to
develop the variable selection methods to work more effectively and fast. How-
ever, due to the nature of non-parametric methods, when the variable selection
step is also added, the calculations get cumbersome. For example, due to its
consecutive subtraction algorithm, kernel regression is a slow algorithm, even for
small sample sizes. As the dimension of the training data increases, the cost of
fitting the kernel regression model increases exponentially. The data has grown a
lot, not only based on observations (rows) but also based on variables (columns).
Therefore, reducing the data size with variable selection is an efficient way to
reduce the training data dimension and workload. This study works on acceler-
ating the variable selection algorithm in non-parametric (kernel) regression with
parallelization. The algorithm combines two steps in non-parametric regression:
bandwidth selection for the Nadaraya-Watson estimator and variable selection.
Also, it consists of independent sequential calculations that iterate over each ob-
servation point. Due to its iterative calculations, this algorithm creates a high
time cost as data sets’ dimensions become more prominent. This computational
load makes it impossible to use the methods proposed in this field for large data
sets. To eliminate this deficiency, we apply a parallelization technique to the
independent sequential analyses to reduce the processing time while keeping the

4

same accuracy level. We construct a simulation design to compare results for
different dimensions of the artificial data and the different number of cores used
in the parallelization. In the simulation, while the calculation results show a
significant gain in the computation time of the parallelization methods used in
R programming, it also gives the exact accuracy measurements.

5

6

CHAPTER 2

LITERATURE REVIEW

2.1 Parallel Linear Regression Models

Regression models have been used for modeling the relationship amongst the
variables for so many years by statisticians. The basis of many machine learning
and statistical methods, linear regression performs sufficiently accurate results
in wide range of areas.

As we discuss in the earlier chapter, the accessibility of the vast amount of data
is much easier than it was before. Large-scale structures bring along different
problems such as timing for any calculations on the data. For example, LS al-
gorithm requires high dimensional matrix multiplications and taking the inverse
of high dimensional matrix.

To shorten the time required for matrix operations; in 1985, O’Leary and White
(4) introduced a parallel multi-splitting strategy for linear systems. Building
a linear regression model requires to solve OLS problem. In 1998, Renaut (3)
introduced a solution to LS problem using parallel multi-splitting method. The
idea behind this technique is that the minimization of the global ||Ax − b||2 is
partitioned to local ||Ax− b||2r. Then, the local ’r’ OLS problems can be solved
separately at the same time in a distributed scheme. After all the required
’r’ problems solved, the outputs are combined using appropriate weights. The
weighting is another object in this research area, there has been a lot of study to
generalize this weighting concept in parallel multi-splitting method (7; 8). The
algorithm that is discussed in (3), connects several articles and theorems, will
be discussed in Chapter 3.

7

2.2 Parallel Kernel Density Estimation

Kernel method, which is the main tool of non-parametric methods, is proposed
by Rosenblatt (9). Since then, it serves to wide range of subjects such as im-
age processing (10), economics (11), geostatistics (12) and bioinformatics (13).
Racine (14), pioneer parallel kernel density estimation (KDE) method, claims
that parallelization can be done by splitting the data points into r chunks, and
then on each core, separate KDEs are estimated for separate data chunks, then
all the estimations from each core are combined. After the data splitting is done,
approximately n

r
data points (where n denotes the number of data points and r

denotes the number of CPU cores) are sent to each core. Therefore, the amount
of time needed to estimate the kernel density is expected to be significantly
shortened.

Several studies survey the parallelization of the kernel estimation (1; 14). Guo
(1) states that the parallel implication of KDE can be done by decomposing
the kernel function, K(.). Briefly, each part of the splitted data is sent to each
processor to obtain density function estimations. Then, the estimated densities
are combined in the master node. With this splitting and combining method,
he claims that parallel method is faster than the sequential one and even linear
speed-up can be achieved in some cases.

Instead of functional decomposition, Racine (14) suggests that KDE can be run
parallel by data division. In this method, the sample is divided into chunks,
and each distinct chunk is sent to distinct cores (processors). In each core, KDE
method is applied on subsamples and finally the estimated values are combined
in master node. This study is limited to KDE only, it is not extended to any
regression model.

Michailidis and Margaritis (15) investigate the parallelization of the KDE tech-
nique in multi-core architecture. In the article, simulation study is conducted for
univariate and multivariate KDE and it is concluded that near linear speed-up
can be achieved for both cases by data partitioning method from the simula-
tion studies. The article also provides a quantitative comparison of six parallel

8

programming frameworks covering Pthread, OpenMP and others. Additionally,
Lopez-Novao (16) conduct simulation study for KDE on multi-core architecture,
too. They conclude that even with a modest CPUs they are able to achieve a
significant decrease in the elapsed run time.

2.3 Parallel Non-Parametric Regression Models

Modern applied data analysts take the advantage of non-parametric methods
which do not have any distributional assumptions. However, non-parametric
approaches are more demanding in terms of computational time than parametric
ones, for several reasons such as requiring iterative steps. However, the pace of
the enhancements of the hardware and software technologies allow us to shorten
the time required to apply non-parametric methods. Also, we aware of the
fact that the methods used to collect and store the data are being improved.
Analyzing bigger data sets requires more time and computational effort. This
requirement leads the reveal of parallel methods (3; 17) to shorten the time
needed to solve a problem or fit a model.

Although there was a package called ’npRmpi’ (18) which had created to solve
kernel regression problems in distributed architectures by combining ’np’ pack-
age (6) and Rmpi package (19) in R. Currently it is no longer available either
directly from CRAN or from github. This package was constructed on an Open
MPI base. Ho et al. (20) states that this package led Linux and Windows users
to take several steps before using the package due to its Open MPI requirement;
however, it was not a big issue for Mac OS users since Mac OS provides fully
functioning Open MPI to the users.

2.4 Variable Selection in Non-Parametric Regression Models

In the literature, there are several well-known variable selection algorithms that
can be applied to the kernel regression model. Those algorithms can be gathered
under two main classes. The first class is the algorithms that down weight the

9

variables with small or no impact on the response, and the second class is the
algorithms that implement subset selection. The effectiveness and usability of
variable selection algorithms in those two classes have been discussed in several
articles; (21; 22; 23; 24).

White et al. (25) introduced a variable selection method in kernel regression
on the basis of their proposed generalized variable selection method, SWW, for
measurement error models (MEM). In many cases, explanatory variables can be
observed with some error; this leads to a violation of the fundamental assumption
of statistical modeling. In such cases, the observed data is contaminated by
measurement error. On MEM solution framework, SWW technique provides
similar solution paths to LASSO for linear models (26; 27). However, applying
the SWW technique on nonparametric regression provides the Nadaraya-Watson
estimator (28). The article states that the measurement error kernel regression
operator (MEKRO) combines two critical steps in kernel regression: bandwidth
selection for Nadaraya-Watson estimator and variable selection.

In this study, we provide a time and cost-efficient algorithm based on the
MEKRO method for variable selection in kernel regression for the first time
in the literature. The algorithm is introduced in the third chapter. A simula-
tion study, similar to the simulation in (26), is conducted and results are shown
in the forth chapter.

10

CHAPTER 3

METHODOLOGY

3.1 Parallel Linear Regression Models

Under this section linear multi-splitting approach is discussed.

Define the OLS linear regression system where Y denotes the response variable
and X denotes the covariate matrix (or design matrix). Then, we can write the
linear regression model in matrix format as follows

.y = Xβ + ε (3.1)

For the parameter estimation, the least square problem is solved by minimizing
the SSE assuming that XT X is non-singular. Then, the parameter estimation
defined as follows

β̂ = (XT X)−1XT y. (3.2)

The design matrix, denoted by X, can be too large and taking inverse of XT X can
create stress on the CPU in some cases. Thus, in 1998, Renaut (3) introduced
a parallel multi-splitting strategy in which the matrix XT X is decomposed by
columns into disjoint blocks. Therefore, the burden on the CPU while taking
the inverse of larger XT X, is decreased significantly.

A multi-splitting of XT X is a collection of matrices Mi, Ni, Ei ∈ Rpxp, i =
1, . . . , r that satisfies:

• A = M - N

11

• XT X = Mi −Ni, i = 1, . . . , r

• Mi ≥ 0, Ni ≥ 0

• Ei are non-negative diagonal matrices;∑r
i=1 Ei = I

The LMS method is defined by the iteration:

βk+1 = E(i)M (i)−1(N (i)βk + y), i = 1, . . . , r; k = 1, ... (3.3)

With this algorithm, for every iteration, the workload is distributed to ’r’ cores
while solving r independent problems of the kind

M (i)yk
i = N (i)xk + y, i = 1, ..., r (3.4)

where yk
j represents the solution of local least squares problem. LS problems

now can be solved independently and then the only communication is required
while updating βk+1 in Equation 3.3.

O’leary and White (4) suggests a decomposition technique in A = M −N ;

A =
K∑

k=1
Ak,

where each matrix Ak has smaller rank than A itself. Moreover, by this method
they introduced an example algorithm which depends on the fact that the
whichever the initial β vector is chosen, after the iteration β vector converges
to β̂OLS by Berman Plemmons theorem (29; 5).

However, to ease of coding we propose an alternative solution. Instead of decom-
posing the matrix A with respect to a rule, we suggest to first create matrix Ni

with randomly generated values from standard normal distribution (assuming
that the data is standardized). By definition Ni has to be non-negative, then
we take the absolute values of the randomly generated values. After Ni is being
created, Mi matrix is created by Mi = XT X + Ni.

Also, we need to initialize (β0). According to Berman Plemmons theorem (29; 5)
we can use any initial (β0), therefore we start generating random values from

12

standard normal distribution. Then, β̂ can be obtained when βk converges to
βk+1.

For the further researches, initial (β0) and decomposing matrix A can be opti-
mized to achieve fewer iterations to save more time.

The Algorithm 1 introduce the parallel non-parametric regression process given
below:

Algorithm 1 Parallel Linear Regression
1: X ← Model Matrix, X(n,p)

2: Y ← Dependent Variable, Y(n,1)

3: Standardize the data
4: A← XT X

5: N (i) ← rnorm(p)
6: M (i) ← A + N (i)

7: Define: D(i) as ∑r
i=1 D(i) = I(n,n)

8: Initialize βp,1 ← rnorm(p)
9:

10: H = ∑r
i=1 D(i)% ∗%solve(M (i))% ∗%N (i)

11: G = ∑r
i=1 D(i)% ∗%solve(M (i))

12:

13: While (convergence condition),
14: beta.update < −H% ∗%beta + G% ∗%b

Application of the Algorithm 1 can be found in Chapter 4; with simulation study
and the results.

3.2 Parallel Kernel Density Estimation

Statistical inference often includes probability density functions and in some
cases distributional properties like variance, skewness, kurtosis or family of the
distribution are not provided or known with the data. If that is the situation,
we may simply apply a non-parametric method called KDE on an observed data
set, which is a sample represents the target distribution of the population.

13

For a given random variable, kernel, provides a probability density. The main
idea to use Kernel in Density estimation is to extend the probability calculation
to the range of the random variable with a Kernel function. A Kernel function
is a real-valued, continuous and bounded function with the following property:
(K: R→ R)

∫
x

K(x)dx = 1. (3.5)

By definition, sum of the probabilities in the domain of the random variable
must be equal to one. Now, assume that we have a random variable X with
cumulative distribution function, F(x), and the random sample X1, . . . , Xn has
the empirical distribution function, S(x), can be defined as

S(x) = number of Xi ≤ x

n
=


0, x < X(1)

i
n
, X(i) ≤ x ≤ X(i+1), i = 1, 2, . . . , n.

1, x ≥ X(n)

(3.6)

Then,

S(x) = number of Xi ≤ x

n
= 1

n

n∑
i=1

1[Xi ≤ x]. (3.7)

Moreover,

f̂(x) = lim
h→0

S(x + h)− S(x− h)
2h

= d

dx
F̂ (x). (3.8)

So, for small h > 0,

f̂(x; h) = 1
2nh

n∑
i

1[x− h ≤ Xi ≤ x + h]

= 1
2nh

n∑
i

1

[
|Xi − x|

h
≤ 1

]

= 1
nh

n∑
i

K

(
Xi − x

h

)
. (3.9)

Note that f̂(x) has the following properties:

• f̂(x) is a consistent estimator of f(x),

14

• f̂(x) is asymptotically unbiased for f(x).

There are several studies to show how parallelization of the kernel density can be
estimated and the time efficiency that the parallelization provides to the users
(14; 15; 30).

For the parallelized version of KDE; assume data set (X) is divided into ’r’
chunks randomly, and from the above equation we define the estimation function
in parallel as the following form:

f̂ (r)(x; h) = 1
n(r)h(r)

n(r)∑
i=1

K

(
X

(r)
i − x(r)

h(r)

)
, (3.10)

where f̂ (r)(x) denotes the estimated kernel density function in rth chunk and
X(r), n(r), h(r) denote the rth data chunk, the number of observation in rth data
chunk, and selected band width for the rth data chunk, respectively.

After estimating r kernel density functions from r data chunks, they are combined
in master node as

f̂(x; h) =
⋃
r

f̂ (r)(x). (3.11)

Simulation study is conducted for Parallel Univariate KDE and the simulation
results are provided in the Chapter 4.

3.3 Parallel Non-Parametric Regression Models

In statistics, linear models are very popular due to the fact that they are pro-
viding great accuracy, easy to apply and interpret. However, they depend on
several assumptions, and in most of the cases it is hard to satisfy all the assump-
tions at the same time. Unlike linear models, kernel regression models do not
require any distributional assumptions and that is why it is a good alternative
for some of the modern data analysts.

15

In Kernel Regression, the main objective is to estimate the regression function
g(x): Rp → R as follows:

g(x) =E[Y |X = x]

=
∫

yfY |X=x(y)dy

= 1
fX(x)

∫
yfx,y(x, y)dy. (3.12)

For a fixed X, we have ∫
fx,y(x, y)dy = fX(x). (3.13)

Therefore; ∫
yfx,y(x, y)dy =

∑
i

yiK

(
xi − x

h

)
. (3.14)

Finally the estimated regression function g(x) can be written as

ĝ(x) =E[Y |X = x]

=
n∑

i=1

K(Xi−x
h

)∑n
i=1 K(Xi−x

h
)
yi

=
n∑

i=1
Wi(x)yi, (3.15)

where

Wi(x) =
K(Xi−x

h
)∑n

i=1 K(Xi−x
h

)
.

The resulting estimator is called Nadaraya–Watson estimator of the regression
function g(x) (28).

It is possible to run KDE algorithm in parallel with data division for Kernel
Regression. Several packages and functions available in CRAN is possible to use
for this aim. Foreach and parLapply are two of them and they provide quite
simple syntax with easy to read code blocks. For the first function, foreach,
managing the algorithm to run as a loop, if possible, is the key point for this
package. In this package there are two main operators, %do% and %dopar%.
The first operator, %do%, is used to evaluate the algorithm sequentially; whereas

16

%dopar% operator is used to run the algorithm in parallel. With the second
function, parLapply, syntax gets much easier. The usage of the function is quite
similar to its sequential version, lapply which is one of the widely used function
in apply family. The apply family is used to manipulate or apply different types
of functions to partitions of data frames, matrices, lists etc. without creating a
loop based scheme.

In the implementation of this study, after we divide the data set into several
chunks, we use foreach and parLapply function to send our algorithm, including
model estimation, testing and combining prediction values, to each core.

From the Nadaraya-Watson estimator for non-parametric regression we have the
following equation:

ĝ(x) =E[Y |X = x]

=
n∑

i=1

K(Xi−x
h

)∑n
i=1 K(Xi−x

h
)
yi. (3.16)

Now, after dividing training sample into ’r’ chunks the equation will become as
following:

ĝ(r)(x) =
n(r)∑
i=1

K(X
(r)
i −x(r)

h(r))∑n(r)
i=1 K(X

(r)
i −x(r)

h(r))
y

(r)
i , (3.17)

where ĝ(r)(x) represents the fitted kernel regression model in the rth chunk and
n(r) represents the number of observations in the rth chunk.

Then, to predict new values, each estimated models, ĝ(r)(x), are applied on new
observations, XT est.

ĝ(r)(XT est) = Ŷ
(r)

T est (3.18)

Then, for final predictions,

ŶT est = 1
r

∑
r

Ŷ
(r)

T est (3.19)

17

Here, ŶT est can be a single value or a vector.

Figure 3.1 depicts the non-parametric regression in parallel. On this diagram,
’n’ represents the number of observation in the training data set, ’r’ represents
the number of cores used, ’k’ represents the number of observations sent to
the cores as chunks, in most cases the data sets cannot be split with equal
number of observations. However, small changes in the number of observations
in the chunks are not likely to lead major differences. Moreover, ’t’ represents
the number of observation in the ’new’ or test data set. The same test set is
sent to each chunk to predict response variable with ’r’ different models. After
’r’ models are predicted, each prediction for each individual, ŷrt are combined
and then mean value of each model for each individual are calculated as final
prediction.

X1

X2

X3

X4

Xn

X11,X12 . . . X1k

Original Data Data Division & Model Train

X1,X2. . . Xt

X21,X22 . . . X2k

X31,X32 . . . X3k

X41,X42 . . . X4k

Xr1,Xr2 . . . Xrk

Make Predictions with Each
Model

Model 1

Model 2

Model 3

Model 4

Model r

mean(Y11,Y21...Yr1)

mean(Y12,Y22...Yr2)

mean(Y13,Y23...Yr3)

mean(Y1t,Y2t...Yrt)

mean(Y14,Y24...Yr4)

Mean of Each
Prediction

Final
Prediction

X1,X2. . . Xt

X1,X2. . . Xt

X1,X2. . . Xt

X1,X2. . . Xt

Figure 3.1: Illustration of Parallel Non-Parametric Regression.

The Algorithm 2 introduce the parallel non-parametric regression process given
below:

Application of the Algorithm 2 can be found in Chapter 4; with simulation study
and the results.

We discuss and adapt two main packages/functions into non-parametric re-
gression models. The first function called foreach from ’foreach’ package (31),
counted among explicit parallelism methods in CRAN, is used. This package
allows users to execute their operations and run their algorithms in parallel on
a multi-core architecture. By the foreach package, user is provided to execute
the algorithm in a loop based scheme, in other words the algorithm can be run
repeatedly on a multi-core architecture. Weston and Steve (32) claims that it

18

Algorithm 2 Parallel Non-Parametric Regression
1: x← Independent Variable(s)
2: y ← Dependent Variable
3: h← Predefined bandwidth
4: K ← Predefined Kernel Function
5:

6: Division:
7: Split x and y into r chunks
8:

9: Inside Function, f, that returns estimated response, ŷ,
10: Obtain K(x)
11: Obtain Wi

12: Estimate ŷ ← ∑
i Wiyi

13:

14: In processor r, apply function f on r-th chunk, 1≤r≤R,
15: Recombination:
16: ŷ ← Collections of outputs from each processor

can be possible to complete a task in minutes where it measured in hours when
it runs sequentially by using ’foreach’ package and decent hardware. Addition-
ally, unlike some of the packages in CRAN that are used for parallel computing,
’foreach’ package is available for Windows OS users, too. In short, this package
creates loop systems so that the divided data chunks can be sent to each slave
node and on each node a non-parametric regression model can be fitted with
a data chunk. The second function is called parLapply from ’parallel’ package
(33). This function is basically the parallel version of lapply function. In several
cases, creating a loop system results in higher computational burden compared
to an apply-like system. There are two main motivations to impose the afore-
mentioned functions in this study. The first one is to show that both functions
can be used by calling the required package in R without any pre-setup. Sec-
ondly, to see if apply family provides faster solutions compared to loop systems
in parallel level. As far as we know, it is the first attempt in literature to give
an insight into the several parallelization strategies in kernel regression.

19

3.4 Parallel Variable Selection Method in Non-Parametric Regres-

sion Models

In this part, the mathematical expression of the MEKRO method for variable se-
lection in kernel regression is represented, and an example algorithm is provided.
Then, parallelization of the algorithm is proposed.

3.4.1 MEKRO method for Variable Selection in Kernel Regression

Assume the observed data is {Xip, Yi}n
i=1, where X.p denotes independent vari-

ables, and Yi denotes dependent variable. White et al. (25) states that the
application of the SWW to kernel regression results in measurement error ker-
nel regression operator (MEKRO), where the MEM selection likelihood is

L̂SEL(λ) = − 1
n

n∑
i=1
{Yi − ĝ(Xi, λ)}2, (3.20)

where

ĝ(Xi, λ) =
∑n

k=1 Yk
∏p

j=1 exp {−λ2(Xi,j −Xk,j)2/2}∑n
k=1

∏p
j=1 exp {−λ2(Xi,j −Xk,j)2/2} , (3.21)

where λ is smoothing parameter. Notice that the likelihood function defined
in Equation 3.20 is the negative mean squared error. This is the objective
function to be maximized. Additionally, for the observed data {Xip, Yi}n

i=1,
ĝ(Xi, λ) defined in Equation 3.21 is the Nadaraya-Watson estimator of g(.),
computed using Gaussian product kernel and diagonal bandwidth matrix.

Here, instead of using traditional smoothing bandwidths, hj, inverse bandwidths
λj = 1/hj are used. In this design, as inverse bandwidths get smaller and ap-
proach zero, bandwidths hj get larger and larger and result in infinitely smoothed
covariates, Xj, and thus they are selected out.

While maximizing MEM selection likelihood, in other words, negative mean
squared error in equation Equation 3.20, a constraint is set as follows;

λj ≥ 0, j = 1, . . . , p;
p∑

j=1
λj = τ, for fixed τ > 0, (3.22)

20

where τ is a hyper-parameter that tunes the roughness of the estimated g(.)
function. For smaller τ values, ||λ|| to be small, implying bigger bandwidths
and substantial smoothing. However, as the hyper-parameter gets larger, in-
crease the roughness in estimated g(.), ĝ(.), since it causes smaller individual
bandwidths.

To avoid constrained optimization, White et al. (25) introduce γ ∈ IRp and let

λj(γj) =
τγ2

j∑p
k=1 γ2

j

, j = 1, . . . , p, for a fixed τ.

We then maximize L̂SEL(λ(γ)) with respect to γ. This guarantees that the
constraints in Equation 3.22 on λ are satisfied for any γ, at the cost of one
additional parameter.

Let πik = Πp
j=i exp {−λ2(Xi,j −Xk,j)2/2} and Γ = ∑p

j=1 γ2
j , then

ĝ(Xi, λ) =
n∑

k=1
Ykπik/

n∑
k=1

πik, (3.23)

and the required gradients are

∂ĝ(Xi, λ)
∂λt

=
 n∑

k=1
Ykπik{−λt(Xi,t −Xk,t)2}

n∑
k=1

πik

−
n∑

k=1
πik{−λt(Xi,t −Xk,t)2}

n∑
k=1

Ykπik

 n∑
k=1

πik

−2

(3.24)

Also, ∂λt/∂γj = −2τγ2
t γjΓ−2 when t ̸= j and ∂λt/∂γj = 2τγj(Γ− γ2

t)Γ−2 when
t = j. Finally,

∂L̂SEL

∂γj

= −4τγj

nΓ2

p∑
t=1

 n∑
i=1
{Yi − ĝ(Xi, λ)}(∂ĝ(Xi, λ)

∂λt

)
(γ2

t − Γ1t=j), (3.25)

where 1(.) is the indicator function (25).

Then, the Akaike information criterion (AIC) for each value of the tuning pa-
rameter, τ , must be compared and finalized the selection algorithm with the one
providing the minimum AIC value. To calculate AIC values that τ minimizes,

21

AICc(τ) = ln{−L̂SEL(λ̂τ)}+ n + tr(Sτ)
n− tr(Sτ)− 2 , (3.26)

where

Sτ =
Πp

j=i exp{−λ2
j(Xs,j −Xr,j)2/2}∑n

k=1 Πp
j=i exp{−λ2

j(Xr,j −Xk,j)2/2} . (3.27)

3.4.2 MEKRO Algorithm

In this part, an explanation of the variable selection algorithm in kernel regres-
sion using MEKRO is given. A pseudo code for the MEKRO algorithm in (25)
is provided in Algorithm 3.

The algorithm first initialize Yi, Xi and hyper-parameter τ and set 4 main func-
tions. The resulting output must optimize λj values. In the Algorithm 3, ’res’
in 10th and 19th lines represent the ith item in a vector of size ’n’. Therefore, the
functions ’gx’ and ’ggx’ returns a vector of size ’n’. In the 9th and 17th lines of
the Algorithm 3 while obtaining πi, vectorization technique is suggested for the
subtraction. By vectorization, we avoid an extra loop for every λj, (j = 1, . . . , p)
which would slow down the algorithm. Also, while obtaining the gradient of g(.)
function for every λt; (t = 1, . . . , p), instead of adding a loop scheme that goes
over each t, it is suggested to call the ’ggx’ function with ’sapply’ function, in
’gL_Sel’ function. This also makes a significant impact on the elapsed time for
data sets consisting several independent variables; in other words, when ’p’ is
large. In the 29th line of the Algorithm 3, ’gLt’ is a vector of size ’p’. Therefore, in
the 30th line colSums() function returns sum of∑n

i=1(Yi−ĝ(Xi, λ))∗∂ĝ(Xi, λ)/∂λt

for t = 1, . . . , p. Let’s denote the sums of each column as S1, S2, . . . , Sp

Now, assume that we have three explanatory variables, p=3; then we have the
following for ggx function;

For j = 1,
−4τ

nΓ2 γ1
[
S1(γ2

1 − Γ) + S2γ
2
2 + S3γ

2
3

]
For j = 2,

−4τ

nΓ2 γ1
[
S1γ

2
1 + S2(γ2

2 − Γ) + S3γ
2
3

]
For j = 3,

−4τ

nΓ2 γ1
[
S1γ

2
1 + S2γ

2
2 + S3(γ2

3 − Γ)
]

22

Algorithm 3 Variable Selection in Kernel Regression
1:

2: Input: Xi, Yi, τ

3: Output: λj

4: Write a function, gx, to obtain ĝ(Xi, λ):
5: gx:
6: for i in 1:n
7: for k in 1:n
8: πi = prod(exp(−λ2

j(Xi,j −Xk,j)2))
9: resi = ∑n

k=1 Ykπi/
∑n

k=1 πi

10: return(res)
11:

12: Write a function, ggx, to obtain ĝ(Xi,λ)
∂λt

for every λt:
13: ggx:
14: for i in 1:n
15: for i in 1:k
16: πi = prod(exp(−λ2

j(Xi,j −Xk,j)2))
17: Lt = −λt(Xi,j −Xk,j)2

18: resi =
[∑n

k=1 YkπiLt ∗
∑n

k=1 πi −
∑n

k=1 πi ∗ Lt ∗
∑n

k=1 Ykπi

]
/(∑k

i=1 πi)2

19: return(res)
20:

21: Write a function, L_Sel, to obtain L̂SEL(λ):
22: L_Sel:
23: return(− 1

n

∑n
i=1{Yi − ĝ(Xi, λ)}2)

24:

25: Write a function, gL_Sel, to obtain ∂L̂SEL

∂γj
:

26: gL_Sel:
27: C = (−4τ)/(nΓ2)
28: gLt = Apply ggx() function for each λt, t=1,..,p
29: res = C * γj * colSums(∑n

i=1(Yi − gx()) ∗ gLt) %*% (γ2
j − diag(Γ, p))

30: return(res)
31:

32: Maximize L_Sel function using it’s gradient gL_Sel.

23

and this is converted into R language as vectorization and matrix multiplication
as follows

−4τ

nΓ2

[
γ1S1γ2S2γ3S3

]γ2
1 − Γ γ2

2 γ2
3

γ2
1 γ2

2 − Γ γ2
3

γ2
1 γ2

2 γ2
3 − Γ



Therefore, Equation 3.24 ’s indicator function can be easily implemented in the
R language.

Notice that in Algorithm 3, there are two πi calculations in the 9th and 17th

lines. Those could be easily combined in a single function; however, we choose
to write the algorithm with one more step for the sake of readability.

3.4.3 MEKRO with Categorical Variables

Based on the approach described in (34), the extended MEKRO for variable
selection in kernel regression where categorical variable(s) are also included in
the model is introduced in this chapter.

Let two domains C and D denotes the variable space for continuous and cate-
gorical respectively.

ĝ(Xi, λ) =
∑n

k=1 Yk
∏

j∈C e{−λ2(Xi,j−Xk,j)2/2}∏
j∈D e{(−λjwj1Xkj ̸=Xij

)/2}∑n
k=1

∏
j∈C e{−λ2(Xi,j−Xk,j)2/2}∏j∈D e{(−λjwj1Xkj ̸=Xij

)/2}
(3.28)

where

wj = 2
1− [∑Dj

t=1{P̂ (Xkj = t)}2]
, (3.29)

where

P̂ (Xkj = t) = 1
n

n∑
k=1

1Xkj=t. (3.30)

Algorithm 4 illustrates the MEKRO algorithm runs with categorical predictors.

24

Algorithm 4 MEKRO with Categorical Predictors
1:

2: Write a function, gx, to obtain ĝ(Xi, λ):
3: gx:
4: Calculate wj;
5: for i in 1:n
6: for k in 1:n
7: πCi

= prod(exp(−λ2
j(Xi,j −Xk,j)2))

8: πDi
= prod(exp(−λjwj/2))

9: resi = ∑n
k=1 YkπCi

πDi
/
∑n

k=1 πCi
πDi

10: return(res)

3.4.4 Parallelization of Variable Selection Method in Kernel Regres-
sion

As it can be easily seen in the Algorithm 3, estimation of ĝ(Xi, λ) is done by
taking one observation, Xi, and make ’n’ separate calculations for πik, where
πik = Πp

j=i exp {−λ2(Xi,j −Xk,j)2/2}, and repeats for every ’n’ observations
consecutively. For every Xi, the calculations are done sequentially and creates
a burden on the processors, therefore takes much time as the dimension of the
data is getting larger. This calculation also takes place in obtaining gradient of
ĝ(Xi, λ), which is ∂ĝ(Xi,λ)

∂λt
.

At this point since every πik; i = 1, . . . , n, the calculation is completely indepen-
dent of each other; this process can be considered as an embarrassingly parallel
process. Therefore, it can be run in parallel, with a potential speed up even for
small sample sizes.

Elapsed time and AIC comparison will be reported and discussed in the follow-
ing chapters. After parallelization of the process, the objective function to be
maximized now becomes as follows

L̂SEL(λ) = − 1
n

n∑
i=1
{Yi − ∪r

c=1ĝ(Xc
i , λ)}2, (3.31)

where ’c’ denotes the cth chunk whereas ’r’ denotes the number of chunks the

25

parallelized process has; in other words, the number of cores is used in the
parallel process.
Also, the gradient of the objective function then become as following;

∂L̂SEL

∂γj

= −4τγj

nΓ2

p∑
t=1

 n∑
i=1
{Yi − ∪r

c=1ĝ(Xc
i , λ)}(∂ĝ(Xi, λ)

∂λt

)
(γ2

t − Γ1t=j). (3.32)

In order to run the algorithm in parallel, foreach package in R is used. The
outer loop in the Algorithm 3 for ’gx ’ and ’ggx ’ are converted to a parallel loop
scheme with foreach package. Additional to the parallelization of πik calculation,
in gL_Sel function in Algorithm 2, we apply ggx() function for each λt, t=1,..,p.
This can also be done in parallel using parSapply function, which allows us
to run the classical ’sapply’ function in parallel. This parallelization does not
provide shorter elapsed time values for small ’p’ values, but it may lead to a
better elapsed time for larger dimensions.

Algorithm 5 illustrates parallel subset selection algorithm with only continuous
variables. The MEKRO algorithm can run with categorical domains too. How-
ever, parallelization of the categorical domain, denoted with (D) in Section 3.4.3,
does not provide any time efficiency. The reason is that the categorical part of
the algorithm depends on the proportions of levels of categorical variables, thus
does not require a high performance computing. At this point, if the data set
contains both categorical and continuous variables, it is suggested that while
estimating ĝ(Xi, λ) in Section 3.4.3, the calculations are made for continuous
variables run on parallel but for categorical variables they can run sequentially.

If the data set includes categorical variables too, then the 8th line in Algorithm 4
can be added to Algorithm 5, and multiplied with the values come from the
parallel part for continuous variables of the algorithm.

26

Algorithm 5 Parallel Variable Selection in Kernel Regression
1: Input: Xi, Yi, τ

2: Output: λj

3: Write a function, gx_par, to obtain ĝ(Xi, λ):
4: gx_par:
5: foreach parallel i in 1:n
6: foreach sequential k in 1:n
7: πi = prod(exp(−λ2

j(Xi,j −Xk,j)2))
8: resi = ∑n

k=1 Ykπi/
∑n

k=1 πi

9: return(res)
10: Write a function, ggx_par, to obtain ĝ(Xi,λ)

∂λt
for every λt:

11: ggx_par:
12: Update parameters; λj, γj

13: foreach parallel i in 1:n
14: foreach sequential k in 1:n
15: πi = prod(exp(−λ2

j(Xi,j −Xk,j)2))
16: Lt = −λt(Xi,j −Xk,j)2

17: Nom =
[∑n

k=1 YkπiLt ∗
∑n

k=1 πi −
∑n

k=1 πi ∗ Lt ∗
∑n

k=1 Ykπi

]
18: Denom = (∑k

i=1 πi)2

19: resi = Nom / Denom
20: return(res)
21: Write a function, L_Sel_par, to obtain L̂SEL(λ):
22: L_Sel_par:
23: return(− 1

n

∑n
i=1{Yi − ĝ(Xi, λ)}2)

24: Write a function, gL_Sel_par, to obtain ∂L̂SEL

∂γj
:

25: gL_Sel_par:
26: C = (−4τ)/(nΓ2)
27: gLt = parSapply ggx_par() function for each λt, t=1,..,p
28: S = colSums(∑n

i=1(Yi − gx_par()) ∗ gLt)
29: res = C * γj * S %*% (γ2

j − diag(Γ, p))
30: return(res)
31: Maximize L_Sel function using it’s gradient gL_Sel_par.

27

28

CHAPTER 4

SIMULATION STUDIES

In this chapter both simulation designs and corresponding simulation results are
provided.

4.1 Simulation Design

Each subsection in this part defines corresponding simulation designs. For some
of the simulation studies a personal computer is used; however, for those which
require significantly higher computation time are run on an external server.

4.1.1 Simulation Design for Parallel Linear Regression Models

In this section the simulation design for application of parallel linear multi-
splitting algorithm on linear regression models is introduced. In this design
there are 3 different sample sizes; 104, 105, 106 for training set and respectively
3 different sample sizes, 102, 103, 104 for testing. Also, 4 different number of
explanatory variables, 5, 10, 15, 20 are used. The data sets are generated ran-
domly and the process repeats 30 times for each sample sizes. Therefore in this
simulation study we have created 3x3x30 = 2700 distinct training and test sets.
In this study, sequential and parallel runs with 2-core, 4-core and 8-core are
compared in terms of elapsed time (in seconds) and MSE.

The simulation is run with R programming language and using foreach function.
The hardware we use for this simulation is an Intel Core i7-10875H CPU having
8 logical cores running with 64-bit Windows OS.

29

4.1.2 Simulation Design for Parallel Kernel Density Estimation

The simulation study for KDE is designed to compare the median elapsed time
(in seconds) values while estimating the kernel density for a random variable.
Three different sample sizes, n=105, 106, 107 and record elapsed time for 30 dif-
ferent runs for each sample sizes are used in the simulation design. Sequential
and parallel runs with 2-core, 4-core and 8-core are compared. Data generation
for each simulation run is carried out randomly, and the samples are generated
from normal distribution with mean zero and standard deviation one.

The simulation is run with R programming language and using foreach and
parLapply functions. The hardware we use for this simulation is exactly the
same as we use for the simulation study for parallel linear regression models.

4.1.3 Simulation Design for Parallel Non-Parametric Regression

The simulation design of this part is based on 3 different sample sizes for training
set which are 102, 103 and 104 and the test sets consist of 25% of each training
set. This is the upper limit of the hardware used for this study, wider range
of sample sizes and different number of cores may be investigated for further
studies.

Briefly, data sets are split into r chunks randomly. After splitting the train set,
each chunk are being sent to separate cores to fit a kernel regression model and
then the test set is sent to separate cores as a whole to make predictions on
different models. Finally, all the predictions from different models on different
cores are collected and the mean value of all predictions are taken from different
cores for every single test observation. The pseudo code of this procedure is
located in Algorithm 2 for details.

30

Algorithm 6 Simulation: Parallel Non-Parametric Regression
1: Data Generation (Train & Test Sets):
2: f ← Define a function
3: x← Generate Independent Variable(s)
4: εi ← Generate an Error Vector
5: y ← Generate Dependent Variable, f(x) + εi

6:

7: Division:
8: Split Train set into r chunks
9: Fit Kernel Regression Model on each chunk, Modelr

10: Make Prediction for Test set with fitted models on each chunk
11: ŷr ←Modelr(Xtest)
12:

13: Recombination:
14: Collect prediction (ŷr) vectors from each chunk
15: ŷi ← 1

r

∑
r ŷri

For the simulations, R programming language is used to fit kernel regression
models with ’npreg’ function from ’np’ package (6). All simulations for the
kernel regression were run on a server called TRUBA - levrekv2, provides 8-core
Intel E5-2680v3 processor, with overall 24-cores, supported by the Scientific and
Technological Research Council of Turkey (TÜBİTAK). The system has 256 GB
memory and runs with Centos 7.3 Linux OS.

4.1.3.1 Univariate Case

The first simulation design is constructed for one dependent (Y) and one inde-
pendent (X) variable. The univariate function used in the simulation is defined
as below:

f(x) = x2cos(x).

Figure 4.1 shows the shape of the function.

31

Figure 4.1: Shape of the univariate function.

Data sets are generated with the following steps:

• Generate X from a standard normal distribution.

• Generate ϵ from a standard normal distribution.

• Generate Y by applying a non-linear function (f) on X, then add ϵ, gener-
ated from standard normal distribution.

Y = f(X) + ϵ.

When a random data set is generated, it is used in each scenario; in other words,
a non-parametric model is fit with the same data but on different number of
cores. Then, with the same design there is another random sample which is 25%
of training data for the testing purpose. Each scenario is run 100 times and their
run time (in seconds) and RMSE values are stored for further investigation.

4.1.3.2 Bivariate Case

The second simulation design is created for one dependent (Y) and 2 independent
variables (Xi, i = 1, 2). Three different sample sizes are used, n = 102, 103 and
104 similar to the previous part. The following bivariate function is used in the

32

simulation:

f(x) = x2
1 cos(x1) + sin(x2)3.

Data sets are generated with the following steps:

• Generate Xij, j = 1, 2 from standard normal distribution.

• Generate ϵ from standard normal distribution.

• Generate Y by applying a non-linear function (f) on X, then add ϵ, gener-
ated from standard normal distribution.

Y = f(X) + ϵ

4.1.3.3 Multivariate Case

The third simulation design is created for one dependent (Y) and 5 independent
variables (Xi, i = 1, ..., 5). The same sample sizes with the previous designs are
used. The artificial data created for this simulation is gathered from the study
of Friedman (35). The following function is used in the simulation:

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.

Data sets are generated with the following steps:

• Generate Xij, j = 1, 2, 3, 4, 5 from uniform distribution.

• Generate ϵ from standard normal distribution.

• Generate Y by applying a non-linear function (f) on X, then add ϵ.

Y = f(X) + ϵ

4.1.4 Simulation Design for Parallel MEKRO Algorithm

To compare the accuracy and elapsed time for this algorithm, we generate i.i.d.
samples from the same function that is suggested in (25), as follows;

33

Y = sin(2πX1) + sin(πX2) + 0.5ε, (4.1)

where X1, X2, X3 ∼ U(0, 1) and ε ∼ N(0, 1). The simulation function (10) is
demonstrated in the Figure 4.2 with a small sample, generated randomly.

Figure 4.2: Shape of the simulation function

Here we generated artificial data set with three independent variables, but the
function is made of 2 of them, X3 is irrelevant. The reason why X3 is also added
to the data set is that since this is a variable selection method, we expect to
see that the corresponding λ3 value is estimated 0, and this variable is selected
out. After the generation of the artificial data, standardization of the variables
is done as suggested in (25). The X1 variable has a higher correlation with Y

than the X2 variable has. While explaining the response variable Y variation,
the X1 variable is more important than the X2 variable. Moreover, we would
expect to see higher λ values obtained for X1 variable than X2 variable for every
pre-defined τ value.

34

Simulations were run on a server consisting 8-core Intel E5-2680v3 processors
with overall 24-cores. The system has 256 GB memory and runs with Centos
7.3 Linux OS.

4.2 Results and Findings

4.2.1 Simulation Results for Parallel Linear Regression

Results of the simulation study for linear multi-splitting in linear regression
models are provided in Table 4.1. Those are the median elapsed time values (in
seconds) for 30 distinct simulation scenario. In each sub-table, p represents the
number of explanatory variable used and n represents the number of observations
in the design. On the rows, ’Seq’ means sequential runs and 2, 4 and 8 cores
stand for the number of cores used in the design.

According to Table 4.1 for considerably small sample sizes, n = 104, and for
every design p = 5, 10, 15, 20, parallelization slows down the algorithm due to
the communications amongst to the cores in each iteration. Therefore, using
parallel algorithm for small dimensions does not provide any time efficiency. On
the other hand, for n = 105, we are able to see that the parallelization technique
starts to shorten the median elapsed time for linear regression algorithm. We
expected to achieve faster solutions as we increase the number of cores used
in the algorithm however increasing the number of cores does not provide any
considerable time efficiency. The reason is the communication between the cores
in each step of the iterative solution requires remarkable time. Thus, using
higher number of cores does not provide faster solutions. Finally, when the
sample size is increased to n = 106 we can achieve more than 6 times faster
solutions for p = 20.

Table 4.2 shows the median MSE values for each simulation. Theoretically, MSE
values for parallel multi-splitting does not depend on how many cores are used
and they are the same for ncores = 2, 4, 8 since we use the identity weights in
the simulation design. Therefore in the Table 4.2 there is only one line of results
for parallel process for each number of parameter.

35

Table 4.1: Elapsed Time (in seconds), Linear Regression

p=5

n=104 n=105 n=106

Seq 0.02094102 0.068717 0.3352962
2 cores 0.03958106 0.051929 0.148092
4 cores 0.05302596 0.06161714 0.2177
8 cores 0.06209302 0.08273697 0.209908

p=10

n=104 n=105 n=106

Seq 0.0257411 0.115129 0.8991439
2 cores 0.03916502 0.0546031 0.166157
4 cores 0.05194712 0.06696916 0.238462
8 cores 0.070755 0.0402334 0.2357371

p=15

n=104 n=105 n=106

Seq 0.02765393 0.1936979 1.74864
2 cores 0.03973389 0.0660069 0.2341781
4 cores 0.03770029 0.07937002 0.2967241
8 cores 0.07218885 0.0742436 0.412267

p=20

n=104 n=105 n=106

Seq 0.03456402 0.1983008 2.0244518
2 cores 0.03986216 0.06616592 0.3562949
4 cores 0.05080605 0.09563994 0.4198401
8 cores 0.0734098 0.135219 0.3306359

36

Table 4.2: Mean Squared Errors, Linear Regression

p=5

n=104 n=105 n=106

Sequential 2.672683 2.097797 2.681294
Parallel 2.672368 2.097772 2.681292

p=10

n=104 n=105 n=106

Sequential 1.693587 2.103697 2.562159
Parallel 1.693601 2.103698 2.562159

p=15

n=104 n=105 n=106

Sequential 2.264115 1.835099 2.206042
Parallel 2.263897 1.835082 2.206041

p=20

n=104 n=105 n=106

Sequential 1.733186 1.46195 2.338848
Parallel 1.733161 1.461949 2.338848

37

In Table 4.2 the median MSE values for both parallel and sequential this simu-
lation design are compared. According to the results shown in Table 4.2 there
is small or no difference between median MSE values of two methods for each
design.

4.2.2 Simulation Results for Parallel Kernel Density Estimation

The results of the simulation studies with univariate kernel density estimation
are reported. In Table 4.3, we share median elapsed times for a simulation for
kernel density estimation.

Table 4.3: Elapsed Time (in seconds), Kernel Density Estimation

Foreach parLapply

n=105 n=106 n=107 n=105 n=106 n=107

Sequential 0.054896 0.791883 18.78582 0.054896 0.791883 18.78582
2 cores 0.053835 0.524596 9.473815 0.660283 0.704948 9.933074
4 cores 0.041925 0.364080 7.767375 1.241756 0.802907 8.712872
8 cores 0.082816 0.328122 6.534538 2.433246 1.362404 7.910116

Table 4.3 provides us with one main result. The parallelization of KDE using
DnR method provides time efficiency for larger samples with both foreach and
parLapply functions, however for relatively smaller sample sizes the paralleliza-
tion does not provide time efficiency. In fact, the parallelization may increase
the elapsed time for relatively small samples.

The simulation results show that the parallelization strategy is crucial in terms
of time efficiency for relatively larger samples. For the sample size 105, the
DnR parallelization does not provide any time efficiency for foreach function,
moreover for parLapply function it significantly slows down the algorithm. For
the sample size 106, the foreach function offers almost 35% faster solution in
2-core parallelization and respectively 55% and 60% faster solutions for 4-core

38

and 8-core parallelization. However, for the same sample size, although parLap-
ply function provides almost 12% faster solution in 2-core parallelization, with
4-core and 8-core parallelization, time efficiency cannot be achieved. Finally,
for the sample size 107, significant time efficiency is achieved by DnR paral-
lelization with both functions. With 2-core parallelization, approximately 50%
and 48% effective results can be achieved with foreach and parLapply functions
respectively. Increasing the number of cores used for this sample size results
in a decrease in the median elapsed time for both functions. It is possible to
achieve almost 59% and 54% time efficiency with 4-core parallelization using
foreach and parLapply functions respectively. Moreover, 8-core parallelization
offers nearly 66% and 58% time efficiency while using foreach and parLapply
functions respectively.

4.2.3 Simulation Results for Parallel Non-Parametric Regression

Three different simulations designs which are univariate, bivariate and multivari-
ate cases for kernel regression are reported with the elapsed time (in seconds),
relative change in elapsed time and RMSE. In this part, median values for both
run time and RMSE results for a set of simulations for Non-Parametric Regres-
sion method are listed on following tables.

Table 4.4 shows the median elapsed times (in seconds) for each simulation design.
There are three different sample generating functions, and three different sample
sizes in our design. On the top of each sub-tables, p=1,2 and 5 represents the
number of parameters used in the sample generating functions. In this section,
we compare median elapsed times of 50 different runs of each design for two
different function which are foreach and parLapply introduced earlier.

39

Table 4.4: Elapsed Time (in seconds), Non-Parametric Regression

p=1 Foreach parLapply

n=102 n=103 n=104 n=102 n=103 n=104

Seq 0.274381 1.787594 152.0201 0.287057 2.130512 189.6113
3 cores 1.666053 1.908610 25.93563 1.710747 2.036216 23.97967
6 cores 1.796663 1.885139 8.323675 1.726394 1.844012 8.137343
12 cores 1.960821 2.008906 3.785587 1.837807 1.872109 3.537981
24 cores 2.558390 2.462539 2.993848 2.324590 2.376621 2.933135

p=2 Foreach parLapply

n=102 n=103 n=104 n=102 n=103 n=104

Seq 0.481238 18.29995 1684.813 0.475189 18.51795 1761.300
3 cores 1.679229 4.780826 267.7928 1.673428 4.298342 219.2693
6 cores 1.868309 2.508023 80.25953 1.789368 2.489918 64.82297
12 cores 1.977318 2.127511 22.17067 1.799092 2.053200 19.82452
24 cores 2.547829 2.531299 7.455359 2.357470 2.457566 7.097829

p=5 Foreach parLapply

n=102 n=103 n=104 n=102 n=103 n=104

Seq 5.647150 248.60433 24566.82 5.46708667 274.2403 25877.04
3 cores 2.785601 43.880413 2810.537 2.57744431 42.78230 2869.852
6 cores 2.176856 17.904519 757.3612 1.97839820 18.49372 724.2150
12 cores 2.128459 7.5005460 226.9664 1.99841415 7.400818 219.3958
24 cores 2.375777 4.0321351 79.12754 2.26951777 3.855904 82.57617

40

Although the sequential runs are completely the same for each part of the simu-
lation, the median elapsed times of sequential runs vary a little. The reason why
they differ slightly is that work load on the server that we run our simulations
may change from time to time. In order to eliminate the unbalanced work load
on the server, line graphs in Figure 4.3 are provided, which are illustrating the
ratios of median elapsed times.

The first major results from Table 4.4 is that the parallelization offers significant
time efficiency for relatively medium and large samples, n = 103 and 104. How-
ever, for considerably small samples, n = 102 and small number of parameters
(p=1,2), the method does not provide sufficient time efficiency, in fact it requires
more time to complete the kernel regression algorithm compared to sequential
run. Additionally, when we increase the number of independent variables to
5, we can see a decrease in the median elapsed time even in smaller samples.
Considering that the increase in data size continues, it is understood that the
effort to be spent on parallelization on statistical methods is substantial.

Table 4.4 also proves that increasing the number of cores used yields a significant
time efficiency for bigger sample designs for each case. Except for the first design
includes only one independent parameter, the increase in the number of cores
used provides time efficiency for ’medium sized’ samples, too. As we discussed
earlier, the parallelization of the kernel regression algorithm and parallelization
with higher number of cores results in an increase in the median elapsed time
for ’small sized’ samples.

Figure 4.3 represents the ratio of elapsed time of parallel runs relative to the
sequential run. On the left hand side, line graphs show the ratio of elapsed times
for foreach function and on the right hand side line graphs represent the ratios
of elapsed time for parLapply function.

41

0

10

20

30

40

50

5 10 15 20 25
Number of cores

T
im

e
R

at
io

Sample Size

n=100

n=1000

n=10000

Change in Elapsed Time − foreach

0

20

40

60

5 10 15 20 25
Number of cores

T
im

e
R

at
io

Sample Size

n=100

n=1000

n=10000

Change in Elapsed Time − parlapply

0

50

100

150

200

5 10 15 20 25
Number of cores

T
im

e
R

at
io

Sample Size

n=100

n=1000

n=10000

Change in Elapsed Time − foreach

0

50

100

150

200

250

5 10 15 20 25
Number of cores

T
im

e
R

at
io

Sample Size

n=100

n=1000

n=10000

Change in Elapsed Time − parlapply

0

100

200

300

5 10 15 20 25
Number of cores

T
im

e
R

at
io

Sample Size

n=100

n=1000

n=10000

Change in Elapsed Time − foreach

0

100

200

300

5 10 15 20 25
Number of cores

T
im

e
R

at
io

Sample Size

n=100

n=1000

n=10000

Change in Elapsed Time − parlapply

Figure 4.3: Change in Elapsed Time Relative to Sequential Process

General and similar conclusions can be drawn from these graphs. The par-
allelization for relatively small and medium sample sizes does not provide a
significant time efficiency with 1 or 2 independent variables. However, when we
increase the number of independent variables to 5, we are able to see that for
n=103, parallelization provides an opportunity to run the algorithm remarkably
fast.

Additionally, when the sample size is considerably high, 104, we can see a sig-
nificant increment in the ratio of elapsed times. This increment seems to be
correlated with the number of cores. For univariate case (p=1), we see that
doubling the number of cores used after 12 does not provide a linear speed-up.
Apart from that scenario, for all scenarios we are able to see that there is a
potential linear speed-up for parallel kernel regression.

42

Finally, although ratios of elapsed times for each function (foreach and parLap-
ply) seem to be really close to each other, there are slight differences. Apparently,
parLapply brings slightly higher speed-up compared to foreach function for ker-
nel regression method. For example, running the kernel regression algorithm
with foreach 24-core makes it is possible to achieve 310.47 times faster solutions
compared to the sequential ones for multivariate case (p=5), and for bigger
sample sizes (n=104). However, on the same conditions, parLapply provides
313.37 times faster solutions compared to sequential run. This slight differences
can be seen for all three different simulation designs with different number of
parameters.

Table 4.5 represents the median Root Mean Squared Error for each simulation
design. We have three different sample generating functions and three different
sample sizes similar to Table 4.4. On the top of each sub-tables, the number
of parameters used in the sample generating functions are indicated (p=1,2 and
5). Unlike the Table 4.4, we do not have two separate results for each functions
because all the RMSE results are exactly the same for both functions.

43

Table 4.5: Root Mean Squared Errors, Non-Parametric Regression

p=1 RMSE

n=102 n=103 n=104

Sequential 1.4140619 1.5043147 1.6313355
3 cores 1.3904418 1.5056749 1.6313433
6 cores 1.3943259 1.5047113 1.6313042
12 cores 1.3982014 1.5057129 1.6314233
24 cores 1.3997703 1.5049241 1.6314469

p=2 RMSE

n=102 n=103 n=104

Sequential 1.1922569 1.3429781 1.2961050
3 cores 1.1901615 1.3437884 1.2965671
6 cores 1.2088067 1.3474531 1.2963941
12 cores 1.1873848 1.3451843 1.2979357
24 cores 1.1916416 1.3458324 1.2997028

p=5 RMSE

n=102 n=103 n=104

Sequential 2.8216695 1.8993387 1.609711
3 cores 2.8429371 1.9875962 1.638009
6 cores 3.1270144 2.1074268 1.684394
12 cores 3.2829552 2.3426828 1.762903
24 cores 4.1298523 2.5496637 1.885775

44

From the Table 4.5 table, we are able to see that parallelization of the kernel re-
gression algorithm provides slight decrease in the median RMSE value of small
sample (n=102), for univariate case (p=1). For this case, there is no signifi-
cant difference in terms of RMSE between parallel runs and sequential runs for
n=103 and 104. For bivariate case where we have two independent variables for
kernel regression, for medium and bigger sized samples (n=103, 104), there is
no significant difference between median RMSE values of parallel and sequen-
tial runs. However, in bivariate simulation design, we see that for small sample
size, the median RMSE values fluctuate when we increase the number of cores
used. Finally, for multivariate case, the increase in the median RMSE is signif-
icant. Although the difference between 3-core parallel run and sequential run
may be considered negligible for multivariate case, up to 4.5%, increasing the
number of cores used results in an increase in the median RMSE value. For
small sample size, we can see up to 46%, 34% and 17% increase in the RMSE
value respectively for each different sample size respectively.

4.2.4 Simulation Results for Parallel MEKRO Algorithm

In this section, simulation results for the MEKRO algorithm is provided.

Figure 4.4 shows the solution path for some values of the hyperparameter τ .
Recall that the first and the second variable is the ones we generated the re-
sponse variable, described in Section 4. The third one is the ’irrelevant’ variable.
λ1, λ2, λ3 are the MEKRO parameters for X1, X2, X3. From Figure 3.1, for sam-
ple size 50, λ3 is estimated 0 for τ = 1, 2, 3 and then it stars to increase. For
sample sizes 100 and 200 the value for λ3 is estimated 0 for one more step of
increase in τ , τ = 1, 2, 3, 4. However, for the sample size 400, λ3 value is shrunk
to 0 for τ = 1, 2, 3, 4, 5. Therefore, this is an indicator that as the sample size in-
creases the algorithm can detect the irrelevant variables and shrunk their effects
better.

45

Figure 4.4: Change in λ over τ

Figure 4.5 represents the median relative elapsed time for MEKRO algorithm
running with different number of cores. Relative Time, is calculated as following;

Relative Time = Sequential Time
Parallel Time

In Figure 4.5, each line represents the relative elapsed time for each sample size
in the simulation design. As it is expected, the parallelization technique provides
significantly faster solutions. For sample size 50, we are able to achieve almost 5
times faster running algorithm when 12 cores are used. However, increasing the
number of cores used 12 to 24 does not provide any considerable time efficiency
for sample size 50. When the sample size is increased to 100, up to 12 cores
we are able to achieve almost linear speed-up, but after 12 cores the speed-up
potential does not follow a linear pattern. However, for sample size 200 and 400
we are able to achieve linear speed-up for this algorithm. With the parallelization
method, this MEKRO algorithm can be run up to 16 times faster for a data set
with 3 variables and 400 observations.

46

Figure 4.5: Parallel Elapsed Time Relative to Sequential Elapsed Time

Figure 4.6: Change in AIC, over tuning parameter τ

47

Table 4.6: Elapsed Time (in seconds), MEKRO Algorithm

n=50 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7

Seq 521.9719 416.1632 485.2282 428.4259 371.2660 394.0977 314.0572
2 cores 302.1288 242.9140 282.4885 249.6838 216.0665 229.9969 184.6151
3 cores 244.8393 199.0052 230.1185 203.6477 176.4736 187.1028 149.6270
6 cores 158.0615 126.9947 147.9697 130.4784 113.3307 120.3874 96.08578
12 cores 107.6001 85.68309 99.47257 88.10784 76.95138 80.94674 64.59627
24 cores 96.22435 78.44308 91.35289 80.27536 69.13914 73.45763 59.08070

n=100 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7

Seq 1680.522 1489.918 1695.172 1687.472 1371.502 1294.625 1171.9943
2 cores 917.3809 808.1143 918.7912 921.9849 744.3063 692.9727 633.1621
3 cores 718.7200 633.5475 719.4204 724.1402 581.6202 551.8655 497.7785
6 cores 399.7617 350.6442 399.9367 402.2911 325.3113 305.3619 276.6470
12 cores 242.2070 213.4682 243.6693 243.3268 196.5807 185.2893 167.8158
24 cores 174.4567 153.3412 176.3156 175.1280 142.6010 134.0309 121.6185

n=200 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7

Seq 6452.619 6467.589 5559.839 6257.362 4994.518 5125.853 4979.012
2 cores 3618.718 3598.480 3086.759 3305.213 2638.192 2701.537 2592.538
3 cores 2551.116 2551.184 2190.019 2549.617 2032.880 2095.583 2053.382
6 cores 1384.625 1388.745 1191.854 1313.7294 1054.119 1086.111 1053.500
12 cores 757.1868 755.7779 645.8416 719.1007 572.2419 591.9123 572.5263
24 cores 470.3340 470.9377 400.9010 432.9642 348.4030 355.4760 346.2039

n=400 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7

Seq 24065.62 24643.37 23612.42 21860.69 21146.30 19301.47 17715.21
2 cores 13431.95 13927.86 13183.43 12180.44 11962.69 10718.70 9942.21
3 cores 9379.325 9597.791 9228.918 8529.242 8247.296 7532.441 6918.769
6 cores 5017.795 5130.878 4903.443 4501.471 4381.930 3995.138 3739.085
12 cores 2628.232 2706.231 2578.861 2388.798 2317.873 2106.292 1968.726
24 cores 1457.633 1503.371 1422.440 1313.570 1273.339 1165.053 1073.262

48

Elapsed time results is given in the Table 4.6. As Table 4.6 suggests that the
parallelization of the algorithm offers a great potential of decrease in the elapsed
time for almost all cases. Parallelization of the process with only 2 cores, results
in almost 2 times faster solutions. However, for small sample sizes increasing the
number of cores used, or in other words number of chunks that the algorithm is
split, is not always producing linear speed up. However, when the sample size is
400, there is a great linear speed up potential that is offered by parallelization
of the algorithm.

The subtraction part in the algorithm slows the calculations down, and it is
easily seen by looking at the elapsed time values for sequential runs given in
Table 4.6. For example, doubling the sample size 50 to 100 for τ = 1, the
algorithm runs 3 times slower. Again, doubling the sample size one more step,
100 to 200, the algorithm runs 4 times slower.

Additionally, Table 4.6 suggests that for higher τ values the algorithm converges
shortly compared to the smaller τ values. Faster solutions are not always the
better solutions. Calculated AIC values shown in Figure 4.6, should be another
indicator while selecting the best model. In our simulation design, it is appeared
to be that setting the hyper parameter τ = 5 is giving the optimal results,
although τ = 7 provides generally faster solutions.

49

50

CHAPTER 5

CONCLUSION

The aim of this study is to apply parallelization techniques to some statistical
algorithms, and raise awareness of the efficiency that parallelization can offer. In
this study, 4 different algorithms, linear multi-splitting method for MLR, KDE,
non-parametric regression and MEKRO algorithm for variable selection in non-
parametric regression, are introduced and their simulation results are provided
in order to compare efficiency that is offered by parallelization. Our main goal
is to achieve time efficiency while maintaining the accuracy of the estimations
and predictions.

Firstly, we introduced the OLS problem for linear regression models. With
iterative multi-splitting technique, OLS problem can be distributed on several
local OLS problems and properly combining their results in an iterative method.
For the ease of coding, we suggested a method in the initial part of the algorithm
and the simulation study is conducted on our suggested method. According
to the results of the simulation study in Chapter 4, parallelization of the LS
algorithm using linear multisplitting method does not affect the accuracy of the
models as shown in the Table 4.2. Also, it provides time efficiency for high
dimensions. However, it does not provide time efficiency for smaller data sets
due to the fact that its iterative solution path requires communication between
threads and that slows down the algorithm.

Secondly, we discuss the kernel density and kernel regression in parallel with
the DnR method. Two main conclusions can be drawn from the simulation
results. Firstly, while estimating kernel densities, DnR parallelization provides
time efficiency for relatively medium and large sample sizes. However, for rel-

51

atively smaller sample sizes achieving time efficiency seems very unlikely while
using DnR parallelization. Additionally, foreach function provides better results
compared to parLapply function in KDE. The second main result is that the
parallelization of kernel regression algorithm offers significant time efficiency for
data sets with higher dimensions. We see that parallelization offers more than
300 times faster results for bigger samples. However, it appears that we can
not achieve a time efficiency while running the algorithm in parallel except for
multivariate case for small samples.

Additionally, parallelization of the process brings a trade-off with itself. In some
designs or some sub-cases of simulation designs, varying amount of increase
are observed in the median RMSE values. This increase in most cases can be
considered negligible, however there is a significant increase in the median RMSE
for small sample sizes in multivariate case compared to sequential run. For that
type of modeling design, we can suggest users not to divide the process to higher
cores, instead running the algorithm with 3 or 6 cores results in better RMSE
values and still they are running significantly faster compared to sequential ones.

Finally, we propose a parallel version of MEKRO algorithm. Thus, the proposed
version performs faster solutions compared to the sequential version of the same
algorithm. The traditional version of the algorithm includes a iterative sub-
traction operation which causes computation burden on CPU. However, since
the subtraction operation in the algorithm can be split into several independent
chunks and provides a potential speed-up. Table 4.6 shows that the traditional
algorithm, even for considerably small sample sizes, needs significantly high com-
putational time and power. However, we managed to decrease the required time
to complete the algorithm.

All in all, in this study we wished to introduce concept of parallel comput-
ing and its applications in statistics. Based on our simulation studies, parallel
computation methods offer a remarkable time efficiency. Thanks to the new
technologies, the data that we can reach is growing exponentially and scientists
have been developing new methods day-by-day and yet still there is so much to
discover.

52

Bibliography

[1] G. Guo, “Parallel statistical computing for statistical inference,” Journal of
Statistical Theory and Practice, vol. 6, no. 3, pp. 536–565, 2012.

[2] N. Matloff, “Software alchemy: Turning complex statistical computations
into embarrassingly-parallel ones,” Journal of Statistical Software, vol. 71,
no. 4, p. 1–15, 2016.

[3] R. A. Renaut, “A parallel multisplitting solution of the least squares prob-
lem,” Numerical Linear Algebra with Applications, vol. 5, no. 1, pp. 11–31,
1998.

[4] D. P. O’leary and R. E. White, “Multi-splittings of matrices and parallel
solution of linear systems,” SIAM Journal on Algebraic Discrete Methods,
vol. 6, no. 4, pp. 630–640, 1985.

[5] J.-J. Climent and C. Perea, “Iterative methods for least-square problems
based on proper splittings,” Journal of Computational and Applied Mathe-
matics, vol. 158, no. 1, pp. 43–48, 2003.

[6] T. Hayfield and J. S. Racine, “Nonparametric econometrics: The np pack-
age,” Journal of Statistical Software, vol. 27, no. 5, 2008.

[7] Z.-Z. Bai, “On the convergence of additive and multiplicative splitting it-
erations for systems of linear equations,” Journal of Computational and
Applied Mathematics, vol. 154, no. 1, pp. 195–214, 2003.

[8] D. B. Szyld and M. T. Jones, “Two-stage and multisplitting methods for
the parallel solution of linear systems,” SIAM Journal on Matrix Analysis
and Applications, vol. 13, no. 2, pp. 671–679, 1992.

[9] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density
Function,” The Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832 –
837, 1956.

53

[10] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image process-
ing and reconstruction,” IEEE Transactions on Image Processing, vol. 16,
no. 2, pp. 349–366, 2007.

[11] A. Yatchew, “Nonparametric regression techniques in economics,” Journal
of Economic Literature, vol. 36, no. 2, pp. 669–721, 1998.

[12] P. J. Diggle and E. Giorgi, Model-based geostatistics for global public health:
methods and applications. CRC Press, 2019.

[13] T. Wen, F. Yang, J. Gu, S. Chen, L. Wang, and Y. Xie, “An adaptive kernel
regression method for 3d ultrasound reconstruction using speckle prior and
parallel gpu implementation,” Neurocomputing, vol. 275, pp. 208–223, 2018.

[14] J. Racine, “Parallel distributed kernel estimation,” Computational Statistics
and Data Analysis, vol. 40, no. 2, pp. 293–302, 2002.

[15] P. D. Michailidis and K. G. Margaritis, “Parallel computing of kernel den-
sity estimation with different multi-core programming models,” in 2013 21st
Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, pp. 77–85, IEEE, 2013.

[16] U. Lopez-Novoa, J. Sáenz, A. Mendiburu, and J. Miguel-Alonso, “An effi-
cient implementation of kernel density estimation for multi-core and many-
core architectures,” The International Journal of High Performance Com-
puting Applications, vol. 29, no. 3, pp. 331–347, 2015.

[17] H. Adeli and P. Vishnubhotla, “Parallel processing,” Computer-Aided Civil
and Infrastructure Engineering, vol. 2, no. 3, pp. 257–269, 1987.

[18] T. Hayfield, J. S. Racine, and M. J. S. Racine, “Package ‘nprmpi’,” 2013.

[19] H. Yu, “Rmpi: Parallel statistical computing in r,” R News, vol. 2, no. 2,
pp. 10–14, 2002.

[20] A. T. Ho, K. P. Huynh, and D. T. Jacho-Chavez, “nprmpi: A package for
parallel distributed kernel estimation in r,” 2011.

54

[21] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society. Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[22] E. Kartal Koc and H. Bozdogan, “Model selection in multivariate adap-
tive regression splines (mars) using information complexity as the fitness
function,” Machine Learning, vol. 101, pp. 35–58, Oct 2015.

[23] Y. Lin and H. H. Zhang, “Component selection and smoothing in multi-
variate nonparametric regression,” The Annals of Statistics, vol. 34, Oct
2006.

[24] J. Lafferty and L. Wasserman, “Rodeo: Sparse, greedy nonparametric re-
gression,” The Annals of Statistics, vol. 36, no. 1, pp. 28 – 63, 2008.

[25] K. White, L. Stefanski, and Y. Wu, “Variable selection in kernel regression
using measurement error selection likelihoods,” Journal of the American
Statistical Association, vol. 112, 08 2016.

[26] L. Stefanski, Y. Wu, and K. White, “Variable selection in nonparametric
classification via measurement error model selection likelihoods,” Journal of
the American Statistical Association, vol. 109, no. 506, pp. 574–589, 2014.

[27] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[28] E. A. Nadaraya, “On non-parametric estimates of density functions and
regression curves,” Theory of Probability & Its Applications, vol. 10, no. 1,
pp. 186–190, 1965.

[29] A. Berman and R. J. Plemmons, “Cones and iterative methods for best least
squares solutions of linear systems,” SIAM Journal on Numerical Analysis,
vol. 11, no. 1, pp. 145–154, 1974.

[30] S. Łukasik, “Parallel computing of kernel density estimates with mpi,” in
International Conference on Computational Science, pp. 726–733, Springer,
2007.

55

[31] R. Calaway, S. Weston, and M. R. Calaway, “Package ‘foreach’,” R package,
pp. 1–10, 2015.

[32] S. Weston, “Using the foreach package,” 2019.

[33] R Core Team, R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2021.

[34] J. Racine and Q. Li, “Nonparametric estimation of regression functions with
both categorical and continuous data,” Journal of Econometrics, vol. 119,
no. 1, pp. 99–130, 2004.

[35] J. H. Friedman, “Multivariate adaptive regression splines,” The Annals of
Statistics, pp. 1–67, 1991.

56

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	LITERATURE REVIEW
	Parallel Linear Regression Models
	Parallel Kernel Density Estimation
	Parallel Non-Parametric Regression Models
	Variable Selection in Non-Parametric Regression Models

	METHODOLOGY
	Parallel Linear Regression Models
	Parallel Kernel Density Estimation
	Parallel Non-Parametric Regression Models
	Parallel Variable Selection Method in Non-Parametric Regression Models
	MEKRO method for Variable Selection in Kernel Regression
	MEKRO Algorithm
	MEKRO with Categorical Variables
	Parallelization of Variable Selection Method in Kernel Regression

	SIMULATION STUDIES
	Simulation Design
	Simulation Design for Parallel Linear Regression Models
	Simulation Design for Parallel Kernel Density Estimation
	Simulation Design for Parallel Non-Parametric Regression
	Univariate Case
	Bivariate Case
	Multivariate Case

	Simulation Design for Parallel MEKRO Algorithm

	Results and Findings
	Simulation Results for Parallel Linear Regression
	Simulation Results for Parallel Kernel Density Estimation
	Simulation Results for Parallel Non-Parametric Regression
	Simulation Results for Parallel MEKRO Algorithm

	CONCLUSION

